GREENHOUSE GAS MITIGATION ANALYSIS

INDUSTRY

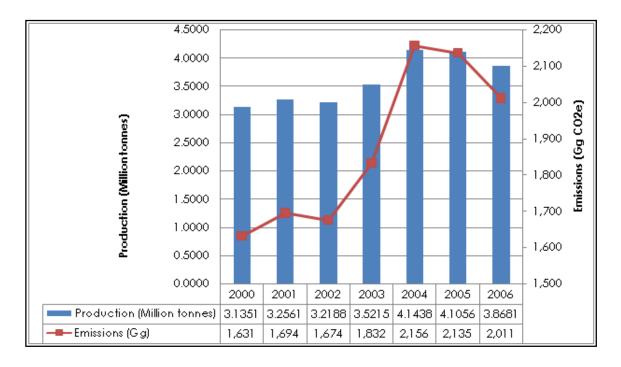
Lebanon's Second National Communication

Ministry of Environment/UNDP

2011

MITIGATION ASSESSMENT

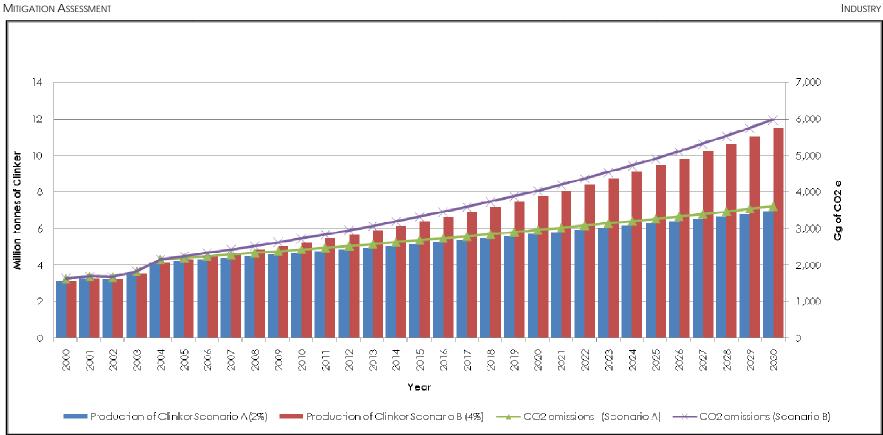
Industry


1. INDUSTRY

1.1. BACKGROUND

The cement industry is an important source of CO_2 emissions in Lebanon: emissions from the cement industry reached 2,156 Gg of CO_2 -eq in 2004 representing 9.45 % of total GHG emissions for that year, and 92% of total industrial emissions (Refer to GHG inventory). Therefore, this chapter focuses on the mitigation of GHG emissions from cement industries.

In Lebanon, there are two Portland cement plants located in Chekka and one cement plant located in Sibline. While the two plants located in Chekka (Holcim and the National Cement Company) were established in 1929 and 1995 respectively, the Sibline plant (Ciments de Sibline) became operational in 1980.


According to the calculations made in the GHG inventory, the total production of clinker from all the plants is estimated at 4,143,809 tonnes in 2004, emitting 2,156 Gg of CO₂-eq (Figure 1-1).

1.2. BASELINE SCENARIO: PROJECTED EMISSIONS

Two baseline scenarios are suggested to portray possible future clinker production and CO₂ emissions from the cement industry in Lebanon until year 2030. Scenario A assumes a low growth rate of 2% in the cement industry while Scenario B uses a higher growth rate of 4%. Figure 1-2 represent forecasts of cement production and CO₂ emissions under Scenario A and Scenario B.

Vulnerability, adaptation and mitigation chapters of Lebanon's Second National Communication

MoE/UNDP

Figure 1-2 Projected clinker production and CO₂ emissions under Scenario a and Scenario B

1.3. MITIGATION OPTION: INCREASING THE ADDITIVE BLEND IN CEMENT PRODUCTION

The production of clinker is the most energy-intensive step in the cement manufacturing process and causes large process emissions of CO2. In blended cement, a portion of the clinker is replaced with industrial by-products such as coal fly ash (a residue from coal burning) or blast furnace slag (a residue from iron making), or other pozzolanic materials (e.g. volcanic material) (Hendriks et al., 2004).

These products are blended with the ground clinker to produce a homogenous product which is blended cement. The reduction in clinker requirement in the production of cement results in reduction of CO2 associated with calcination of limestone in kilns (UNFCCC, 2005):

The future potential for application of blended cements in Lebanon depends on the current application level, on the availability of blending materials, and on standards and legislative requirements. It was however not possible to obtain this information during the course of this study.

A case study in India (UNFCCC, 2005) revealed that an increase of the share of additive (fly ash in this case) from 27.66% to 35% (which is the maximum percentage of the fly ash that can be accepted in cement according to Bureau of India Standards BIS) would reduce the emissions by an estimated average of 33,608 tonnes of CO₂-eq per year resulting in a 1.32% reduction of total CO₂ emissions.

In the United States, the costs of blending materials may vary between 15 and 30 USD/Gg for fly ash and approximately 24 USD/Gg for blast furnace slag.

1.4. LIMITATIONS, RECOMMENDATIONS AND CONCLUSIONS

Due to the difficulty of accessing local technical data, the option proposed in this report is based on international experience to provide an indication of the possibility of application in Lebanon.

A recent study has investigated a comprehensive list of possible measures in the cement sector in Thailand. A total potential for CO2 abatement of up to 15% of total emissions was found to be costeffective in Thailand. The most cost effective measures, based on Thailand's conditions along with other possible mitigation options applied in other countries, are summarized in Table 1-2 These options could be further explored in Lebanon. However, if the Lebanese government would like to see a genuine effort to reduce GHG emissions in the country from the cement sector, the following measures are proposed to be followed:

- Creation of a dialogue platform between the government and the cement factories management representatives;
- Establishment of annual targets for GHG emissions reduction in cement factories;
- Support to increase the flow of CDM revenues to encourage costly mitigation measures in the cement sector.

1.5. MITIGATION STRATEGY

Table 1-1 below presents the mitigation strategy for the cement industry (relating to the cement production process), and Table 1-2 summarizes the constraints associated with its implementation.

TARGET	PROPOSED MITIGATION STRATEGY	ACTIVITIES	RESPONSIBILITY	PRIORITY (ST/ MT/ LT)	INDICATIVE BUDGET (USD)	Sources of Financing/ Implementation Partners
Reduction of GHG emissions from the Cement Industry	Reduce GHG emissions from the cement manufacturing process.	The main activities include: Increasing the additive blend in cement production. Substitution of conventional pre- calcination method by a pre-calcination method aimed at CO2 production in a highly	Cement companies (private sector) Mol MoE ALI (Association of Lebanese Industrialists)	ST	Cost to be determined based on technology selection and plant size.	The Arab Fund for Economic and Social Development (AFESD) The European Investment Bank (EIB) Kuwait Fund for Arab Economic Development (KFAED) The Abu Dhabi Fund for Development (ADFD)
		concentrated form. Replacing parts of the plant (motors, raw mill vent fan, preheater fan, kiln drives, etc.) by high efficiency ones.				USAID UNIDO

VULNERABILITY, ADAPTATION AND MITIGATION CHAPTERS OF LEBANON'S SECOND NATIONAL COMMUNICATION

MITIGATION ASSESSMENT

TARGET	PROPOSED MITIGATION STRATEGY	ACTIVITIES	RESPONSIBILITY	PRIORITY (ST/ MT/ LT)	INDICATIVE BUDGET (USD)	Sources of Financing/ Implementation Partners
Reduction of GHG	Reduce GHG	The main activities	Cement companies	ST	Cost to be determined	The Arab Fund for
emissions from the	emissions from the	include:	(private sector)		based on technology	Economic and Social
Cement Industry	cement	Increasing the additive	Mol		selection and plant	Development (AFESD)
manufacturing process.	0	blend in cement production.	MoE		size.	The European Investment Bank (EIB)
	Substitution of conventional pre-	ALI (Association of Lebanese			Kuwait Fund for Arab	
	calcination method by a pre-calcination	Industrialists)			Economic Development (KFAED)	
	method aimed at CO2				The Abu Dhabi Fund for	
		production in a highly				Development (ADFD)
	concentrated form.				USAID	
	Replacing parts of the				UNIDO	
	plant (motors, raw mill					
		vent fan, preheater fan,				
		kiln drives, etc.) by high efficiency ones.				

Table 1-1 Mitigation strategy for the Industry sector (process)

MoE/UNDP

INDUSTRY

MITIGATION ASSESSMENT

MITIGATION STRATEGY		Constraints/ Gaps				
	Legal/ Policy	Institutional	Technical/ environmental	Capacity and Awareness		
Reduce GHG emissions from the cement process	Insufficient regulation and	Lack of enforcement power	High cost of technology and	None		
	standards relating to GHG	by MoE, which is in charge of	lack of financial support and			
	emissions from cement	monitoring industrial	incentives for industries to			
	factories	emissions	promote low emission			
			technologies.			

Table 1-2 Constraints to the implementation of mitigation measures

APPENDIX A: CO2 ABATEMENT MEASURES FOR THE CEMENT INDUSTRY

CO₂ ABATEMENT TECHNOLOGY/ MEASURE	Average annual CO2 abatement during scenario period (ktonnes CO2/year)	CO ₂ abatement cost (USD/tonne CO ₂)			
OPTIONS FROM THAILAND (HASANBEIGI ET AL., 2010)					
Adjustable peed drive for kiln fan	2.61	-73.62			
Replacement of separator in coal mil circuit with an efficient grit separator	1.12	-72.93			
Replacement of cement mill vent fan	0.06	-68.90			
High-efficiency motors	18.99	-68.30			
Variable frequency drive (VFD) in raw mill vent fan	1.79	-67.93			
High efficiency fan for raw mill vent fan with inverter	0.15	-65.55			
Bucket elevator for raw meal transport from raw mill to homogenizing silos	1.01	-64.75			
Replacement of preheater fan with high-efficiency fan	0.30	-64.73			
VFD in cooler fan of grate cooler	1.37	-62.79			
Energy management and process control in grinding	36.73	-58.74			
Adjustable speed drives	37.95	-56.82			
Efficient vertical roller mill for coal grinding	5.21	-55.32			
Installation of variable frequency drive and replacement of coal mill bag dust collector's fan	1.45	-54.02			
Bucket elevators for kiln feed	0.53	-36.79			
Replacing a ball mill with vertical roller mill	190.37	-35.26			
Preventative maintenance	28.03	-32.76			

MITIGATION ASSESSMENT			Industry
Raw meal process control (vertical roller mill)	9.8	-32.72	
High pressure roller press as pre- grinding to ball mill	100.12	-32.51	
Efficient kiln drives	1.09	-27.58	
Kiln shell heat loss reduction	545.73	-19.76	
Energy management and process control systems for clinker making step	222.6	-17.04	
Modification of clinker cooler (use of mechanical flow regulator)	37.55	-16.55	
Portland limestone cement	156.86	-14.38	
Optimize heat recovery/upgrade clinker cooler	34.97	-13.85	
Upgrading the preheater from 4 stages to 5 stages or from 5 stages to 6 stages	377.34	-137	
High-efficiency classifiers	2.16	22.01	
High efficiency vertical roller mill for raw material grinding	19.97	47.33	
Efficient transport system (mechanical transport instead of pneumatic transport)	1.33	145.15	
Use of gravity system instead of pneumatic system in raw meal blending	23.92	246.35	

CO₂ ABATEMENT TECHNOLOGY/ MEASURE	Average annual CO2 abatement during scenario period (%)	CO ₂ abatement cost (USD/ tonne CO ₂)					
CASES FROM OTHER COUNTRIES							
Substitution of conventional pre- calcination method by a pre- calcination method aimed at CO ₂ production in a highly concentrated	50% of CO ₂ emissions associated with the cement manufacturing process	Not available					
form ¹ .							

Utilizing CO ₂ sequestration in the	5% reduction in impact score over	Not available	
waste product Cement Kiln Dust	traditional Portland cement		
(CKD) ²			

Sources: 1- Rodriguez N. et al. (2009)

2-Huntzinger D. & Eatmon T. (2009)

REFERENCES

Hasanbeigi, A., Menke, A., & Price, L. (2010). The CO₂ abatement cost curve for the Thailand cement industry. *Journal of Cleaner Production*, 10: 1509-1518.

Hendriks, C.A., Worell, E., De Jager, D., & Riemer, P. (2004). *Emission Reduction of Greenhouse Gases from the Cement Industry* (Adobe Digital Editions version). Retrieved from http://www.ieagreen.org.uk/prghgt42.htm

UNFCCC, (2005). Clean Development Mechanism Project Design Document form (CDM-PDD)-Increasing the Additive Blend in cement production by Jaiprakash Associates Ltd (JAL).

Huntzinger, D. and Eatmon, T. (2009). A life-cycle assessment of portland cement manufacturing: comparing the traditional process with alternative technologies. *Journal of Cleaner Production*, *17*: 668-675.

Rodriguez, N., Alonso, M., Abanades, J.C., Grasa, G. and Murillo, R. (2009). Analysis of a process to capture the CO₂ resulting from the pre-calcination of the limestone feed to a cement plant. *Science Direct*, 1:141-148.